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Privacy

There is not a single or universal legal definition of “privacy” [1].

First legal definition by Warren and Brandeis, “the right to be let alone or free from intrusion”.
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THE RIGHT TO PRIVACY.

[1] Computer Speech & Language (Jun 2019), Preserving Privacy in Speaker and Speech Characterisation, Nautsch et al.



Four types of privacy

US Constitution (incl. the Fourth Amendment) defines 4 distinct types of privacy [2]

1. Physical/Accessibility : non-intrusion involving one’s physical space

2. Decisional . non-interference involving one’s choices

3. Psychological/Mental : non-intrusion/interference involving one’s thoughts or
identity

4. Informational . limiting access to one’s personal information (data
privacy)

[2] The Handbook of Information and Computer Ethics (2008), Informational Privacy: Concepts, Theories, and Controversies, Herman T. Tavani.



GDPR

At the EU level:

e General Data Protection Regulation (Regulation 2016/679)

e ‘Police’ directive (Directive 2016/680)

e Defines “biometric data” as data which allows or confirms the unique
identification of that natural person.




Why privacy in speech processing?
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Rich in information: speaker’s identity, gender, emotional state, pathological
conditions, intention, personality, race and culture.

[3] The GDPR & Speech Data: Reflections of Legal and Technology Communities, First Steps towards a Common Understanding;
Nautsch et al. Proc Interspeech 2019



Previous approaches (limitations)

e \/oice conversion and cryptographic approaches were conventionally

investigated.
e “Found data” must be rendered neutral due to advances in voice cloning.

e De-identification vs Anonymization
e Strict evaluation criteria must be enforced not “security by obscurity”
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Two objectives of anonymization

e User must have complete control over the sharing of sensitive attributes of

speech with the service provider.
o Application level permission must be granted
o Disentanglement of attributes must be done
e Anonymization should not affect the utility of speech, e.g. linguistic variability

and content.
o  Output must be usable for further processing, e.g. pitch extraction, phonetic analysis, etc.
o  Output must be intelligible and suitable for annotation and training of automatic speech
recognition (ASR) systems.



Speech vs speaker anonymization

Speech anonymization deals with non-biometric yet sensitive attributes, for
instance: bank details in the spoken text.

Speaker anonymization deals with biometric attributes, such as speaker’s identity,
personality traits, gender, race, etc.
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Our approach to anonymize speaker’s identity

1. Representation learning:

a. Removing speaker-specific features from bottleneck representation of ASR through

adversarial training.

2. Voice conversion: Anonymize identity by transforming into random

pseudo-speakers



Motivation: Adversarial approach

Shown to learn a representation which:

1. is speaker-invariant.
2. performs well for ASR task.
3. allows ASR by a third party.

Following the literature of speaker invariance in different context (bottleneck features, traditional models, ...):
ICASSP 2018.
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Adversarial approach

Conventional end-to-end speech recognition
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Third party ASR decoding

e Speaker anonymization will be performed on device
e Anonymized representation would be sent to the server for decoding

User's device
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Adversarial anonymization...

Gradients from adversarial branch are reversed and scaled by a.

Scheduling: a starts from a small value and slowly grows to a constant

value.
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Attacker scenarios - evaluation schemes

0/1

:

Closed-set Open-set
identification verification

Inside the adversarial ASR X-Vector based Speaker
Verification



Open-set evaluation based on ISO standard

ISO/IEC 24745 prescribes a “biometric information protection” scheme, which involves
e Enrollment of biometric identity,
e Storage, and
e \Verification using relevant scoring mechanism.
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Results (open vs closed set)

Spectral
features

WER (ASR) 11.30 ¢
Accuracy 97.22 48.63 ¥ 5.60 §
(closed)

EER (open) 4.31 24.77 4 25.97 4

We first computed WER at & = 0 to get a fair baseline, then trained over this network with & =
10.

Adversary architecture is similar to open-set architecture.

WER increases slightly indicating bearable utility loss.

The speaker recognition accuracy (closed-set) decreases significantly.

The speaker verification error (informed attacker) only increases slightly indicating that
adversarial training does not immediately generalize over unseen speakers.



Lessons learnt and future direction

e Significant privacy gain in closed-set with little loss of utility.

e Unstable and require careful hyperparameter tuning.

e Asingle adversary may not be enough for adequate generalization, multiple
adversaries with complexities should be investigated.

e Different scheduling strategies, eg: per-batch gradient application,
hypervolume maximization.

e Establish correlation between dataset and appropriate value of .

e Instance normalization for removing speaker information.

e Experiments with siamese and variational setting.



Motivation: Voice conversion approach

e Adequate literature and previous studies
e Allows publication of anonymized speech corpus

e Intuitive anonymization framework
o Diffuse speaker’s identity among randomly selected pseudo-speakers
o  Spectrogram warping using functions with random parameters

e Requirements

o Non-parallel
o Many-to-many
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VoiceMask

Frequency warping based on composition of quadratic and

bilinear function using two different parameters.
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Fig. 2: The internal architecture of VoiceMask.
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Vocal Tract Length Normalization (VTLN)

e K phonetic classes, learnt in unsupervised fashion using GMMs
e Transformation parameters are found by minimizing the distance between
target class spectra and transformed source class specitra.
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Disentangled speech representations (DSR)

e Speaker information is static throughout the utterance, while content is
dynamic
e Application of instance normalization in the content encoder, removes

speaker information
e With a single utterance of source and target speakers, voice conversion can

be performed with reasonable quality
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Instance normalization

Batch Norm
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One-shot embeddings over unseen corpus

t-SNE embeddings where each speaker is represented by a

unique color
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Privacy scheme

Source

speaker (S) \ \‘
R:jandom ) Target Voice Anonymized
pseudo-speaker speaker (T) transformation speaker (S’)
selection

Anonymization pool




Ilgnorant attacker (previous studies)
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Semi-informed attacker
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Informed attacker
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Strategies of defence...
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Results

Higher Equal Error Rate (EER) indicates higher privacy gain.
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Score distribution

e Impostor (orange) and genuine (blue) trial scores overlap indicates higher confusion
during authentication
e Informed attacker is able to authenticate speakers even after anonymization.
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Conclusion and future directions

e Authentic measure of privacy can be achieved through “informed” attacker
model.

e Several attackers can be simulated based on real-world application.

e Random pseudo-speaker selection can be performed based on:
o Gender
o Distance metric
o Speaker distribution

e Investigate if the anonymization can scale to multiple languages.



Summary

There is little or no synchronization between legal and technical experts of
privacy, at least in the domain of speech processing.

Reviewed some previous studies related to speaker anonymization
Anonymization must empower the user to take control over sensitive
attributes and allow corporations to publish data safely.

Adversarial representation learning is promising for a distributed ASR setup.
Voice conversion based anonymization allows private data publishing to some
extent.

Strict evaluation protocols must be enforced to authentically measure the
privacy gain.



Voice Privacy Challenge

The challenge is to develop anonymization solutions which suppress personally identifiable
information contained within speech signals.

Using freely available datasets.

https://www.voiceprivacychallenge.org/

Baseline recipe available at:

https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020

Organized by:
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https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020

Thanks for your attention!

More details on :

"
7 N
QU/'

https://briimohan.qgithub.io/ q NN

\

i ’

/ /\\\\\

) o . '\
Email : brij.srivastava@inria.fr ‘Z‘L\ i
‘\M



https://brijmohan.github.io/
mailto:brij.srivastava@inria.fr

