

Soutenance de thèse

Speaker Anonymization: Representation, Evaluation and Formal Guarantees

December 2nd, 2021 Brij Mohan Lal Srivastava

Supervisors: Dr. Aurélien Bellet (Magnet) Dr. Emmanuel Vincent (Multispeech) Prof. Marc Tommasi (Université de Lille) Speaker Anonymization | Introduction

Context

Widespread usage of voice interfaces. Relies on:

- Massive centralized storage of data
- Advances in speech processing
- Enormous computing capabilities

Raises privacy threats beyond the spoken message alone.

Sensitivity of speech data

A voice technology company or a third-party attacker may be interested in finding out

- the speaker's identity
- speaker attributes (age, gender, accent, etc.)
- the emotions expressed in the utterance
- personality traits
- health status
- etc.

Relevant legal constraints

Voice data can produce distinguishing and repeatable biometric features.

- 1. Right to privacy a fundamental right
- 2. General Data Protection Regulation (GDPR, 2016) requires compliance by May 2018
- 3. Exploring the ethical, technical and legal issues of voice assistants (2020) white paper by CNIL
- 4. EDPB Guidelines 02/2021 on virtual voice assistants

Speaker Anonymization | Introduction

Problem

We aim to answer the following central question in this thesis:

How to remove the biometric identity of the speaker from any speech utterance, while maintaining its usefulness for Automatic Speech Recognition (ASR)?

Summary of contributions

- 1. Definition of a threat model for speaker anonymization, along with strong attacks that leverage auxiliary knowledge
- 2. Privacy-preserving adversarial learning method for end-to-end ASR
- 3. Optimization of the privacy-utility trade-off in x-vector-based anonymization
- 4. Demonstration of the viability of anonymized speech to train an ASR system
- 5. Differentially-private speaker anonymization

Speaker Anonymization | Background

Outline

- 1. Background on speech processing tasks
- 2. Threat Model and Privacy Evaluation using *Informed* Attackers
- 3. X-vector based Anonymization
- 4. Removing Residual Speaker Information — Towards Provable Guarantees
- 5. Conclusion and Perspectives

Automatic Speech Recognition (ASR)

- Evaluation metric: Word Error Rate (WER)
 - Edit distance between the reference and the estimated transcription

Automatic Speaker Identification (ASI)

- Evaluation metric: Accuracy
- Setting: Closed set of speakers

Automatic Speaker Verification (ASV)

- Evaluation metric: Equal Error Rate (EER)
- Setting: Open set of speakers

10/45

Outline

- 1. Background on speech processing tasks
- 2. Threat Model and Privacy Evaluation using *Informed* Attackers
- 3. X-vector based Anonymization
- 4. Removing Residual Speaker Information — Towards Provable Guarantees
- 5. Conclusion and Perspectives

Proposed threat model

12/45

Subsequently adopted for the first VoicePrivacy challenge

Attacker's knowledge

Using voice conversion (VC) for anonymization

Goal:

To convert a given source speaker's voice into a target speaker's voice without changing the content.

Voice conversion methods

Considered three representative transformation methods (sample original ()) "stuff it into you, his belly counseled him")

► Voicemask: ◄)

Time-invariant spectral envelope warping + linear pitch transformation

- ► Vocal tract length normalization (VTLN): ()
 - Phonetic class-wise spectral envelope warping + linear pitch transformation
- ► Disentangled speech representation (DSR): ◄)

End-to-end encoder-decoder based speaker information removal

Target selection strategies

(b) perm

(c) random

Experimental setup

Data set: LibriSpeech, a 960-hour English read speech corpus derived from audiobooks containing 1,283 male and 1,201 female speakers

17/45

Experimental setup

- Data set: LibriSpeech, a 960-hour English read speech corpus derived from audiobooks containing 1,283 male and 1,201 female speakers
- ▶ Privacy metrics: Linkability $(D_{\leftrightarrow}^{\text{sys}})$
 - *D*^{sys}_↔ ∈ [0, 1]
 0 ⇒ full protection, 1 ⇒ no protection

Experimental setup

- Data set: LibriSpeech, a 960-hour English read speech corpus derived from audiobooks containing 1,283 male and 1,201 female speakers
- ▶ Privacy metrics: Linkability $(D_{\leftrightarrow}^{\text{sys}})$

$$\blacktriangleright D^{\rm sys}_{\leftrightarrow} \in [0,1]$$

- $0 \Rightarrow$ full protection, $1 \Rightarrow$ no protection
- Utility metric: Word Error Rate (WER)

Gomez-Barrero et al., "General framework to evaluate unlinkability in biometric template protection systems".

Privacy evaluation (core contribution)

Comparison of different attackers (privacy)

Linkability increases as the attacker's knowledge increases

Comparison of different attackers (utility)

▶ WER (%) of the anonymized speech as compared to the baseline

Original data –	Anonymized data – Retrained model								
Original model	VoiceMask	VTLN			DSR				
	random	const	perm	random	const	perm	random		
9.4	18.1	19.8	18.4	15.9	41.5	23.7	115.1		

 VoiceMask and VTLN show similar degradation in terms of WER, while DSR degrades the quality significantly

Summary of this part

- Identified actors and proposed a threat model for speech anonymization
- Defined several attackers with increasing knowledge
- Evaluated three voice conversion strategies against these attackers
- Established that auxiliary knowledge strengthens the attack

Summary of this part

- Identified actors and proposed a threat model for speech anonymization
- Defined several attackers with increasing knowledge
- Evaluated three voice conversion strategies against these attackers
- Established that auxiliary knowledge strengthens the attack
- Limitations: Fixed set of "real" target speakers and significant degradation of quality

Outline

- 1. Background on speech processing tasks
- 2. Threat Model and Privacy Evaluation using *Informed* Attackers
- 3. X-vector based Anonymization
- 4. Removing Residual Speaker Information — Towards Provable Guarantees
- 5. Conclusion and Perspectives

X-vector based anonymization

Mixed-target *pseudo-speaker* and flexible scaling of target pool

Fuming Fang et al. "Speaker Anonymization Using x-vector and Neural Waveform Models". In: 10th ISCA Speech Synthesis Workshop. 2019.

Design choices in x-vector space

Question by speakers and users:

How to choose the target pseudo-speaker for an optimal privacy-utility trade-off?

Design choices in x-vector space

Question by speakers and users:

How to choose the target pseudo-speaker for an optimal privacy-utility trade-off?

Comparison under different attack scenarios

Recommended anonymization scheme: Distance PLDA, Proximity dense, Gender random, Assignment speaker-level

I 📕))

25/45

Large-scale speaker study

- Realistically, without auxiliary information, the attacker may need to search the true identity among several speakers
- Goal: Attacker's performance as a function of the number of enrollment speakers

Large-scale speaker study

- Realistically, without auxiliary information, the attacker may need to search the true identity among several speakers
- Goal: Attacker's performance as a function of the number of enrollment speakers
- Data set: Mozilla Common Voice (English), a speech data set collected by crowdsourcing
 - Used 24,610 speakers out of 52,000, with total 320,000 utterances
 - 20 speakers under re-identification attack

Large-scale speaker study

- Realistically, without auxiliary information, the attacker may need to search the true identity among several speakers
- Goal: Attacker's performance as a function of the number of enrollment speakers
- Data set: Mozilla Common Voice (English), a speech data set collected by crowdsourcing
 - Used 24,610 speakers out of 52,000, with total 320,000 utterances
 - 20 speakers under re-identification attack
- Privacy metrics: top-k speaker identification precision

Better protection after anonymization (Top-*k*)

 Top-20 precision for different attackers as a function of the number of speakers in the population

 After anonymization, a crowd of 52 speakers provides as good protection as 20,500 speakers before anonymization

27/45

Utility evaluation

Utility of anonymized speech

- Re-training ASR system with anonymized speech
- Close to baseline performance over anonymized data

Summary of this part

- Actively participated in the design and organization of the VoicePrivacy Challenge
- Compared and recommended the best combination of the four design choices for x-vector based anonymization scheme
- Established the utility of anonymized speech for both ASR training and decoding
- Large-scale speaker study showed that the speakers are much better protected after anonymization

Summary of this part

- Actively participated in the design and organization of the VoicePrivacy Challenge
- Compared and recommended the best combination of the four design choices for x-vector based anonymization scheme
- Established the utility of anonymized speech for both ASR training and decoding
- Large-scale speaker study showed that the speakers are much better protected after anonymization
- Limitation 1: disentanglement of speaker information not perfect
- Limitation 2: only empirical evaluation of privacy using ASI and ASV

Outline

- 1. Background on speech processing tasks
- 2. Threat Model and Privacy Evaluation using *Informed* Attackers
- 3. X-vector based Anonymization
- 4. Removing Residual Speaker Information — Towards Provable Guarantees
- 5. Conclusion and Perspectives

Differential privacy (1/2)

Definition (Local differential privacy)

Let \mathcal{A} be a randomized algorithm taking as input a data point in some space \mathcal{X} , and let $\epsilon > 0$. We say that \mathcal{A} is ϵ -local differentially private (ϵ -LDP) if for any $x, x' \in \mathcal{X}$ and any $S \subseteq \operatorname{range}(\mathcal{A})$:

$$\Pr[\mathcal{A}(x) \in S] \leq e^{\epsilon} \Pr[\mathcal{A}(x') \in S],$$

where the probabilities are taken over the randomness of A.

John C Duchi, Michael I Jordan, and Martin J Wainwright. "Local privacy and statistical minimax rates". In: 54th IEEE Annual Symposium on Foundations of Computer Science. 2013.

32/45

Differential privacy (2/2)

Definition (Laplace mechanism)

Let $f : \mathcal{X} \to \mathbb{R}^d$ and let the ℓ_1 -sensitivity of f be defined as

$$\Delta_1(f) = \max_{x,x'\in\mathcal{X}} |f(x) - f(x')|_1.$$

Let $\eta = [\eta_1, \ldots, \eta_d] \in \mathbb{R}^d$ be a vector where each $\eta_i \sim \text{Lap}(\Delta_1(f)/\epsilon)$ is drawn from the centered Laplace distribution with scale $\Delta_1(f)/\epsilon$. The algorithm $\mathcal{A}(\cdot) = f(\cdot) + \eta$ is ϵ -local DP.

33/45

Cynthia Dwork et al. "Calibrating noise to sensitivity in private data analysis". In: 3rd Theory of Cryptography Conference. 2006.

Overview of approach

Replaced the F0 extractor and ASR AM with their DP versions — trained with the noise layer ()

Differentially-private pitch extractor

Effect of DP on pitch sequence

- Original (non-private) and noisy pitch for $\epsilon = 10$ and $\epsilon = 1$
- DP-Pitch preserves the intonation reasonably well

Privacy and utility of DP-Pitch features

DP-Pitch significantly reduces the speaker identification accuracy
 Pearson correlation is preserved for *e* > 1

37/45

Differentially-private BN extractor

Privacy and utility of DP-BN features

- DP-BN significantly reduces speaker identification accuracy
- Gradual decline of utility as ϵ increases

39/45

Combination of DP-BN and DP-Pitch features

		Utility		
Method	Lo	cal ϵ	Practical	Practical
	BN	Pitch	$D^{\mathrm{sys}}_{\leftrightarrow}$	WER
Without DP (part 2)	∞	∞	0.14	6.8%
With DP	100	1.0	0.11	5.8%
With DP	100	0.1	0.10	5.6%
With DP	10	1.0	0.13	6.5%
With DP	10	0.1	0.13	6.4%
With DP	1	1.0	0.12	7.0%
With DP	1	0.1	0.10	6.7%

- Rise in privacy protection after pluggin-in DP feature extractors
- Marginal rise in utility with DP-BN $\epsilon = 100$ and $\epsilon = 10$

40/45

Summary of this part

- Challenged the disentanglement assumption made in the previous part
- Formulated methods for obtaining differentially-private BN and Pitch features
- The utterance-level privacy budget for DP-Pitch is ϵ , while for DP-BN it is $\epsilon \times T$
- Although the overall privacy budget is too large, DP noise addition translates into clear gain in privacy, and sometimes in utility

Speaker Anonymization | Conclusion and Perspectives

Outline

- 1. Background on speech processing tasks
- 2. Threat Model and Privacy Evaluation using *Informed* Attackers
- 3. X-vector based Anonymization
- 4. Removing Residual Speaker Information — Towards Provable Guarantees
- 5. Conclusion and Perspectives

Global summary

- Identified the actors and defined a threat model for speech anonymization, which was adopted by the VoicePrivacy challenge
- Proposed strict evaluation protocol using a continuum of attackers
- Proposed design choices and pitch conversion methods for x-vector based anonymization
- Proposed differentially-private scheme
- Conducted large-scale speaker study to realistically measure the strength of anonymization
- Established the utility of anonymized speech for ASR training and decoding
- The proposed solution provides a high degree of protection against the strongest attack 43/45

Speaker Anonymization | Conclusion and Perspectives

Extensions and open problems

- Use of adversarially-learned bottleneck features in x-vector based anonymization
- More design choices, such as the selection of different speaker pools
- Stronger attackers built using utterance-level assignment
- Assessment of usability in a wider context, such as remote health monitoring, emotion preservation, etc.
- Extension to other languages

-Speaker Anonymization | Conclusion and Perspectives

Thank you for your attention!

45/45